Received: July 28, 1983; accepted: September 24, 1983

PRELIMINARY NOTE

Dehydration of 2-Trifluoromethyl-3,3,3-trifluoropropanol with Base*

SUSUMU MISAKI* and SHUICHI TAKAMATSU

Chemical Division, Daikin Industries, LTD., 700-1, Hitotsuya, Settsu, Osaka 564, (Japan)

SUMMARY

2-Trifluoromethyl-3,3,3-trifluoropropanol gave 2-trifluoromethyl-3,3,3-trifluoroprop-l-ene in good yield by the action of base under mild conditions.

During the study of making 2-trifluoromethyl-3,3,3-trifluoroprop-1-ene (1), we found a base, especially potassium hydroxide, acted unusually as a dehydrating reagent upon 2-trifluoromethyl-3,3,3-trifluoropropanol (2) under mild conditions to yield (1).

Compound (1) is a useful monomer for the synthesis of fluoropolymers. It is polymerized itself and also is used as a comonomer in the synthesis of various fluoropolymers [1].

It is an unexpected reaction that a base acts as a dehydrating reagent for such a polyfluoroalcohol. Usually dehydration of polyfluoroalcohols is known to be difficult and only drastic conditions using reagents such as phosphorus pentaoxide [2] or sulphuric acid [3] give the dehydrated compounds.

^{*} Reported at the 10th International Symposium on Fluorine Chemistry in Vancouver (Canada) 1982

The starting alcohol was synthesized in good yield by the following route:

$$(CF_3)_2 CHCF_2 OCH_3 \xrightarrow{H_2SO_4} (CF_3)_2 CHCOOCH_3 \xrightarrow{\text{LiAlH}_4} (C_2H_5)_2 OCH_3 (CF_3)_2 CHCOOCH_3 \xrightarrow{(C_2H_5)_2 OCH_3} (CF_3)_2 CHCH_2 OH$$

(CF₃)₂CHCOOCH₃

 $\begin{array}{l} ({\rm CF}_3)_2{\rm CHCF}_2{\rm OCH}_3 \ ; \ 34.8 \ {\rm g} \ (0.15 \ {\rm mole}), \ {\rm H}_2{\rm SO}_4 \ ; \ 6 \ {\rm g}, \ {\rm SiO}_2 \ ; \ 3.5 \ {\rm g} \\ (0.058 \ {\rm mole}), \ {\rm Reaction \ temperature} \ ; \ 65-90 \ {}^\circ{\rm C}, \ {\rm Reaction \ time} \ ; \\ 1 \ {\rm hr.}, \ {\rm Yield} \ ; \ 30 \ {\rm g} \ (95\%). \\ \\ {\rm BP. \ 88 \ }^\circ{\rm C} \ ; \ {\rm MS}, \ {\rm m/e} \ = \ 210 \ ({\rm M}^+), \ 190 \ ({\rm M}^+{\rm -HF}), \ 179 \ ({\rm M}^+{\rm -OCH}_3) \ ; \\ \\ {\rm ^1H \ NMR \ ({\rm CDCl}_3)} \ ; \ \delta \ 3.9 \ ({\rm s, CH}_3), \ 3.8{\rm -}4.3 \ ({\rm m, CH}), \ \ {\rm ^{19}F \ NMR \ ({\rm CCl}_4, \\ {\rm ext. \ TFA}) \ ; \ \delta \ 12.7 \ ({\rm d, CF}_3, \ {\rm J} \ = \ 8.5 \ {\rm Hz}). \end{array}$

(CF₃)₂CHCH₂OH

 $(CF_3)_2CHCOOCH_3$; 50 g (0.238 mole), LiAlH₄; 6.5 g (0.171 mole), ether; 150 ml, Reaction temperature; -15 \circ -10 °C, Reaction time; 2.5 hrs. Yield; 30.3 g (70%). BP. 102 °C; MS, m/e = 181(M⁺-H), 163(M⁺-F), 113(M⁺-CF₃), 31 (CH₂OH), ¹H NMR (CDCl₃); δ 3.7(d,CH₂ J = 4.5 Hz), 2.6-3.2 (m,CH), 3.0(s,OH), ¹⁹F NMR (CCl₄, ext. TFA); δ 12.6(d,CF₃, J = 8.5 Hz).

The dehydration was carried out using a large excess of powdered base with or without solvent at room temperature to 50 °C. As the base potassium hydroxide gave the best yield and sodium hydroxide was next, as shown in Table 1.

Table 1

Dehydration of compound (2) with various bases

Base		кон	NaOH	LiOH	Ca(OH) ₂
Yield	(१)	57.9	26.4	0	0

 $(CF_3)_2CHCH_2OH$; 1.1 mmole, Base ; 11 mmole CCl_4 ; 5 ml, Reaction temperature ; 20 °C, Reaction time ; 5 min.

 $(CF_3)_2 C = CH_2$ (1)

BP. 14 °C ; MS, m/e = 164(M⁺), 145(M⁺-F), 95(M⁺-CF₃), ¹H NMR (CDCl₃) ; δ 6.3(s,CH₂) ; ¹⁹F NMR (CCl₄, ext. TFA) ; δ 13.5(s,CF₃).

Table 2

Dehydration of compound (2) with various solvents

Solvent	CC14 CHC13	2 2	CH3CHC12	CH2C1CH2C1
Yield (%)	57.9 60.7	66.4	80.0	45.1
Solvent	снс1,сн,с1	CHC1,CHC1	2 СН2СІС	Cl ₃ CCl ₂ =CHCl
Yield (%)	1d (%) 54.6		57.	0 61.2
Solvent	CF ₂ ClCFCl ₂	Dioxane	n-Propano	1 NEAT
Yield (%)	52.9	44.8	0	52.0

(CF₃)₂CHCH₂OH ; 1.1 mmole, KOH ; 11 mmole, Solvent ; 5 ml Reaction temperature ; 20 °C, Reaction time ; 5 min.

To extend the procedure to other polyfluoroalcohols, we tried to dehydrate $(CF_3)_2CFCH_2CH_2OH$ and $(CF_3)_2CFHCH_2OH$ but these compounds did not give the dehydrated products under the same reaction conditions.

ACKNOWLEDGEMENT

I wish to express my appreciation to the late Mr. S. Takamatsu for his help in doing this work. I also wish to thank the members of the Research Department for their help.

REFERENCES

- 1 N. Vanderkooi, Jr. and H. J. Huthwaite, US Pat., 3894097 (1975).
- 2 E. T. McBee, J. F. Higgins and O. R. Pierce, J. Am. Chem. Soc., 74 (1952) 1387.
- 3 E. T. McBee, O. R. Pierce and M. C. Chen, J. Am. Chem. Soc., 75 (1953) 2324.